

The quite complex "simple stellar populations" of Globular Clusters

Angela Bragaglia INAF-Osservatorio Astronomico di Bologna

IAU Symp. 268 - Light elements in the Universe - Geneva - Nov 10 2009

Outline (& conclusions)

I intend to present the following case:

- that GCs are quite complex stellar aggregates
- that this complexity is apparent from their CMDs (HB, SGB, MS)
- □ that it can also be deduced from their chemistry (CNO, Na-O)
- □ that the "anomalies" are connected with the GC formation
- that the He content may be different from star-to-star
- that GCs self-pollution is modulated by their mass (but not exclusively)

$GC \neq SSP$

Single Stellar Population SSP : coeval, (initially) chemically homogeneous, single stars SSP : described by age, composition (Y, Z), IMF

Best examples: star clusters (see Renzini & Buzzoni 1986)

but :

- There are binaries
- Not all stars have same initial chemical composition (Z and/or Y)
- Not all stars are strictly coeval

Not all GCs were created simple

Not all GCs were created simple

...to M54, NGC 2808, M22, etc ...

Not all stars were created equal

(...with the same initial chemical composition...)

Cannon et al. (1998) --- Gratton et al. (2001) --- Ramirez & Cohen (2002) 47 Tuc NGC6752 M71

TO, SGB & lower RGB stars show Na-O anticorrelation \Rightarrow no (important) extra-mixing, but ORIGINAL difference \Rightarrow multiple populations in GCs

[Fe/H]: ω Cen & M22 (& M54...)

Na-O anticorrelation

RGBNGC2808TO & SGB

Na-O anticorrelation

Carretta et al. 2006; 2007a,b,c ; 2009a,b; Gratton et al. 2006; 2007

Other (anti)correlations

Mg-Al (anticorr.); Mg-Si (corr.); Al-Na (corr. -but Al ...)

& talks on Li in GC (Korn, Gonzales-Hernandez, Lind, Bonifacio)

Entruct		ŧ./	ELE
0 0.5	0 0.5	0 0.5	Carretta et al. 2009b
[Na/Fe] [Na/Fe]	[Na/Fe]	

He and the HB (a)

higher Y ⇒ brighter HB bluer HB

Proposed link between the broad MS and the HB: different Y

He and the HB (b)

He & multiple MS (a)

He & multiple MS (b)

NGC 2808

Remember:

- complex HB (3 main groups)
- triple MS

But also:

- very extended Na-O anticorrelation (3 peaks?)

D'Antona et al. 2005, Piotto et al. 2007 : all connected ?

O-poor (& Na-rich & N-rich) ⇒ He-rich

M54 (a)

Carretta et al. in prep.

All creatures great and small

Unambiguous (photometric) evidence of MPs in : ω Cen, NGC2808, M54, NGC6388, 47 Tuc, NGC1851, M22, NGC6752, ... high-mass ...

Unambiguous (spectroscopic) evidence of MP in <u>all</u> clusters studied ... intrinsic property ...

... and mass is not all...

All creatures great and small

Unambiguous (photometric) evidence of MPs in :

 ω Cen, NGC2808, M54, NGC6388, 47 Tuc, NGC1851, M22, NGC6752, \ldots

... high-mass ...

Unambiguous (spectroscopic) evidence of MP in <u>all</u> clusters studied

... intrinsic property ...

GCs ⇔ Na-O

Carretta et al. 2009d (submitted)

19

If only they could talk

20

Outline (& conclusions)

I believe to have convincingly presented the case:

- that GCs are quite complex stellar aggregates
- □ that this complexity is apparent from their CMDs (HB, SGB, MS)
- □ that it can also be deduced from their chemistry (CNO, Na-O)
- □ that the "anomalies" are connected with the GC formation
- that the He content may be different from star-to-star
- that GCs self-pollution is modulated by their mass (but not exclusively)

THANK YOU